R. R. Bacsa and J. Kiwi, "Effect of Rutile Phase on the Photocatalytic Properties of Nanocrystalline Titania Duding the Degradation of p-Coumaric Acid", *Appl. Catal. B: Environ.*, **16**, 19-29 (1998).

Background correlation between photocatalytic activity (PA) (for what kind of reaction?) and physical properties of photocatalyst (e.g. TiO_2) crystallite phase (structure): polymorph - [amorphous], anatase, brookite, rutile e.g., crystallite size surface area etc a lot of discussion on the effect of crystal structure, especially **anatase** and **rutile -->** ambiguous many authors claimed the superior activity of TiO₂ with anatase and rutile mixture problem 1: Can we discuss PA by using only crystal phase? many characterisitics are also changed along with crystallite phase generally rutile crystallite forms larger particle, i.e., smaller specific surface area Is the order of PA applied in any case? problem 2: different dependence of PA on physical properties How can we evaluate PA coprehensively? fact 1: rutile is thermodynamically stable, and the others are kinetically stable; transform into rutile by treatments including heating (annealing), braying... XRD (X-ray diffraction) tells us the cryatallite phase, qualitatively, not quantitatively fact 2: very small nuclei of crystallites only gives raman scattering peak, but not appears in XRD several modes of mixing of two crystallite phase are proble fact 3: e.g., physical mixture of crystallites one crystal phase covers others two phases are attached each other TEM and electron diffraction can be a possible technique but homogenuiety is needed

Photocatalysts

prepared by hydrothermal treatment (250-275 deg, ca. 15-40 atm) of peptized (making clear) sol prepared with hydrolysis of titanium(IV) alkoxides [already reported by **ref. 13** but not interpreted]

Table 1					
catalyst	BET surface area/m ²	precusor (alkoxide)	crystal phase	$PA/10^{18}$ no of mol. sec ⁻¹ m ⁻²	PA/10 ¹⁸ no of mol.sec ⁻¹
A100	109	Ti butoxide	anatase (amor?)	1.6	170
R30	72	Ti isopropoxide	anatase 70/rutile 30	40	2880
R50	68	Ti ethoxide	anatase 50/rutile 50	12	820
R100	9	Ti ethoxide	rutile	1.5	10
P-25	(50)	commercial Degussa	anatase 80/rutile 20	24	1200
CLDO2210	50	commercial Tioxide	rutile	7.7	390

PA: photocatalytic oxidative decomposition of p-coumaric acid (p-CA) into CO_2 H_2O_2 was added

suspension containing

TiO	1g	
p-CÅ	0.37 mM (in many cases) 55 mg	370 µmol
H_2O_2	3.7 mM (in many cases)	3700 µmol
$O_2^{}$?	?
water	1 dm^3	

cf. Fig. 13 in ref. 11.

Fig. 13. The proposed reaction network for the oxidation of *p*-coumaric acid with CuO·ZnO-Al₂O₃ catalyst.

- Table 1 (meaning of PA divided by BET area?) if not considered --> right side columun extraordinary high activity of R30 and negligible activity of R100.
- Fig. 1 unknown how could they evaluate the **rate** of PA decrease --> initial slope? A100, R100, and CLDO2210 were less active; anatase-rutile mixtures were better? PA for R100 and CLDO2210 were similar (? >5 times) --> not influenced by BET area
- Fig. 2 effect of irradiation (wavelength? 2.1 kW Suntest lamp (AM1) Xe arc?) effect of H_2O_2 addition

Fig. 3 (delete "log" of regend of vertical axis) first-order kinetic simulation (how much C₀?) fitted --> what does it mean?
1) rate was determined by diffusion of p-CA from the bulk of solution
2) amount of adsorbed p-CA was proportional to concentration in bulk (Henry type) ratio of rate constant of P-25 ca. 1.6 times, corresponding to what?

Fig. 4 dependence on the initial concentration of p-CA on R30: not so obvious "0.08-0.5 mM" in the figure caption should read 0.18-0.9 mM

assuming C_0 in Fig. 3 was lower than those in Fig. 4,

- 1) light intensity (photon flux) limited rate
- 2) saturation of adsorption at > 0.18 mM p-CA
- Fig. 5 dependence of amount of R30 --> rate was increased with the amount but saturated inner filter effect ? <-- number of absorbed photons might be constant presumably due to the decreased concentration of adsorbed p-CA
- Fig. 6 relation between TOC (total organic carbon) decrease and CO₂ evolution; almost parallel --> without long-lived intermediate(s) at lower concentration cf. in Fig. 4, 0.2 mM was the lowest and gave monotonous decrease

Fig. 7	X-ray diffraction facts: R100 contained small amount of anatase and/or brookite (trace 4) A100 contained small amount of rutile (trace 1)				
	cf. ref. 13 reported the preparation of TiO ₂ powders				
	Table 1 in ref. 13				
		ethoxide, water/alkoxide ratio = 80 , BET = 68.0	> R50		
		isopropoxide ratio = 80 , BET = 71.8	> R30		
		butoxide, ratio = 80 , BET = 107.1	> (A100)?		
	Fig. 2 in ref. 13				
	above-mentioned three samples giving different XRD patterns				

"An estimate of the anatase/rutile is obtained by taking the ratio of the integrated intensities (the intensity ratios are calculated from the integrated area ratios) of the (110) reflection of the rutile to the (101) reflection of the anatase phase. [What was the standard?]

cf. in ref. 13: It is mentioned here that **the peak intensity is a qualitative estimate** of the trend because large differences in the crystallite size are observed in the transmission electron micrographs (TEM, Fig. 1) and hence the rutile concentrations could be less than that shown in Fig. 3.

cf. Fig. 2 in ref. 13

Fig. 2. Powder X-ray diffractograms of titania powders after hydrothermal processing of peptized titania from ethoxide, isopropoxide, and butoxide. Water/alkoxide ratio in all cases is 80.

Fig. 8	TEM of R30 (completely	y same as Fig. 1 in ref. 13!)			
-	sphare (diameter ca. 25 n	m) + long prismatic particles (end-to-end length ca. 50 nm)			
	assignment: amb	piguous			
	cf. in ref. 13 "All the	large (55 nm) crystals show the rutile phase" concluding			
	independent formation of	crystallites of anatase (sphare) and rutile (prism)			
	> mixing anatase and ru	atile is not a reason for higher activity			
	> anatase or rutile crys included?	stallites prepared under the condition where both crystallites are			
Fig 9	pore size distribution (na	rtly same as Fig. 4 in ref. 13!)			
1 18. >	characteristic behavior of	FR50 giving larger pores (mesopore)			
	maximum pore size was	increased with rutile content			
	rutile crystallites	s made larger pores> higher photocatalytic activity?			
Fig. 10	electrophoretic mobility: point of zero charge, a pH where mobility is zero				
C	zeza potential of $R30 = -$	+49 mV: preferencial adsorption of negatively charged molecules			
	(p en)				
Conclus	sion				
	PA: combination of	pore size			
		pore size distribution			
		appropriate crystal plane on which adsorption takes place			
Referen	ces ref. 20 should re	ad J. Kiwi, M. Graetzel, J. Phys. Chem., 91 (1987) 6673-6677.			
No consideration of electron-hole recombination and effect of physical properties on it.					
rutile crystallites with relatively larger surface area (CLDO2210)					